THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH 2050A Tutorial 5

- 1. (a) Let I := (a, b], where a < b. Show that the set of cluster points of I is [a, b].
 - (b) Write down the set of cluster points of the following subsets of \mathbb{R} :
 - i. $\{x_1, x_2, \cdots, x_N\}$
 - ii. ℕ
 - iii. $\{1/n : n \in \mathbb{N}\}$
 - iv. $I \cap \mathbb{Q}$, where I = [0, 1]
- 2. Use the definition of limit to show that

$$\lim_{x \to -1} \frac{x^2 + 2x + 4}{x + 2} = 3$$

- 3. Let $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$. Suppose c is cluster point of A.
 - (a) Prove the Sequential Criterion for limit : $\lim_{x\to c} f(x) = l \ (\in \mathbb{R})$ if and only if every sequence (x_n) in $A \setminus \{c\}$ converging to $c, \ (f(x_n))$ converges to l.
 - (b) Suppose $\lim_{x\to c} f(x)$ does not exist. Show that there exists $\epsilon_o > 0$ and two sequences (x_n) and (y_n) in $A \setminus \{c\}$, both converging to c, such that $|f(x_n) f(y_n)| \ge \epsilon_o$ for all $n \in \mathbb{N}$.
 - (c) Prove the **Cauchy Criterion for limit** : $\lim_{x\to c} f(x)$ exists if and only if for all $\epsilon > 0$, there exists $\delta > 0$ such that if $x, y \in A$ with $0 < |x c|, |y c| < \delta$, then $|f(x) f(y)| < \epsilon$.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) := \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

- (a) Show that f has a limit at x = 0..
- (b) Show that if $c \neq 0$, then f does not have a limit at c.